
MATHEMATICS OF COMPUTATION 
VOLUME 64, NUMBER 211 
JULY 1995, PAGES 1035-1065 

SUMMATION BY PARTS, PROJECTIONS, AND STABILITY. I 

PELLE OLSSON 

ABSTRACT. We have derived stability results for high-order finite difference ap- 
proximations of mixed hyperbolic-parabolic initial-boundary value problems 
(IBVP). The results are obtained using summation by parts and a new way 
of representing general linear boundary conditions as an orthogonal projection. 
By rearranging the analytic equations slightly, we can prove strict stability for 
hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to 
yield stability on nonsmooth domains in two space dimensions. Using the same 
procedure, one can prove stability in higher dimensions as well. 

1. INTRODUCTION 

When solving a partial differential equation numerically it is necessary to 
have some bound of the growth rate of the solution, since otherwise roundoff 
errors could grow arbitrarily fast. This upper bound can be established by ensur- 
ing some kind of stability. We have elected to use the energy method, because 
it can be applied to the continuous as well as the discrete model. Furthermore, 
it can be applied to general domains, which is important when studying multi- 
dimensional problems. 

Stability of the continuous problem is established by means of an integration- 
by-parts procedure introducing boundary terms, some of which must be elimi- 
nated to ensure stability. For the finite difference model integration by parts is 
replaced by summation by parts. This amounts to designing the discrete differ- 
ence operator ensuring that, in addition to the accuracy requirements, certain 
conditions of antisymmetry are met. As a consequence, the common problem 
of finding proper "numerical" boundary conditions will be eliminated; they will 
be built in the discrete difference operator. 

The analytic boundary conditions are yet to be incorporated. We propose a 
certain projection operator, which interacts with the difference operator so as 
to generate boundary terms that are completely analogous to those of the con- 
tinuous problem. This can be done for any type of linear boundary conditions. 
Thus, an energy estimate is obtained for the discrete problem, provided there 
is one for the analytic model. This conclusion remains true for domains in sev- 
eral space dimensions, even if the boundary is nonsmooth. Furthermore, using 
this projection operator allows us to derive stability results for a larger class of 
finite difference operators than those considered in [5]. Stability will be proved 
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for high-order finite difference approximations of mixed hyperbolic-parabolic 
variable-coefficient systems subject to general boundary conditions. 

1.1. An introductory example. To illustrate the underlying principles of the en- 
ergy method, we consider the convection-diffusion equation 

Ut = Uxx + UX, x E (O, 1), t > O, 
u(x, O) = f(x), 
u(O, t) = 0, 
ux(l, t) = g(t). 

In the sequel we shall use the standard L2-scalar product 

(u, v) = j uvdx 

with the corresponding norm defined as Ilull2 = (u, u). 
We can obtain an a priori estimate for this example using the following tools. 
(i) Integration by parts: 

d lluIl2 = 2(u, uxx) + 2(u, ux) = -2lluxll2 + 2(u, u0) + 2uuxl0. 

(ii) Boundary conditions: 

d ul = -21 2 + 2(u ux) + 2u(l , t)g(l t). 

(iii) Cauchy-Schwarz inequality: 

dt IUIl2 < -211u 112 + 21ulllluxi + 2u(1 , t)g(1, t) 

(iv) Algebraic inequality: 
21xyl < EX2 + E-ly2 

implies ( e = 1) 

d llull2 < -lluX112 + 11uI12 + u(1 t)2 + g(l t)2 

(v) Sobolev inequality: 

ul1200 < EIIUX112 + (e-' + 1)lluII2 

is used to eliminate u(1 , t) (e = 1) 

dt d llUll2 ? 3llull2 + g( 1, t, 
which can be solved analytically to yield 

llu( , t)ll2 < e3' (11f112 + j g(T)2dT) 

If we are to obtain such an estimate for a system of equations we will also need 
(vi) The adjoint of A: 

(u, Av) = (A7TU, v). 
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Summing up, the energy method boils down to the six basic "tools" above. In 
the subsequent sections we shall see how these principles can be modified so as 
to give an energy estimate for the semidiscrete system. 

2. GENERAL PRINCIPLES FOR THE SEMIDISCRETE CASE 

In this section the basic principles of the energy method will be transferred to 
the semidiscrete case. Furthermore, a number of lemmas, which will be needed 
later, will be stated. Throughout this section grid vectors will be denoted by 
vT = (v.. . vT), Vj E Rd. Difference operators approximating a/8x will be 
designated by 

1dooI ... dovI 
D = I E R 

idvoI ... dvv,I, 
where D is written as a square matrix for convenience; in reality D will be a 
banded matrix, where the bandwidth is independent of the mesh size h = 1 /v . 

2.1. Summation by parts. In the semidiscrete case we employ summation by 
parts instead of integration by parts. The basic idea is to use difference operators 
satisfying 

(2.1) (u, Dv)h = u 0vv-uo -(Du, V)h 

with respect to a weighted scalar product 
v 

(U, V)h = h E ijuTVj . 
i,j=O 

It should be remarked that the usual Euclidean scalar product cannot be used. 
To prove the existence of summation by parts, it suffices to consider scalar 
products of the form 

(2.2) = ( I ) , () E R(rI+1)dx(rI+l)d , = 1, 2 
\ E(2) 

where the blocks of ? are given by Xij = cijrII, I E Rdxd; r1 and the elements 
of ?(), / = 1, 2, are independent of h. The following existence proof can be 
found in [5]. 

Proposition 2.1. There exist scalar products (2.2) and difference operators D of 
accuracy 2p - 1 at the boundaries and 2p in the interior, p > 0, such that the 
summation-by-parts property (2.1) holds. 

Confining ourselves to the case where V?1) and ?(2) are diagonal, we have 
the following existence theorem [4]. 

Proposition 2.2. There exist diagonal scalar products (2.2) and differenc'e opera- 
tors D of accuracy p at the boundaries and 2p in the interior, 1 < p < 4, such 
that the summation-by-parts property (2.1 ) holds. 
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Remark 2.0. If one omits the requirement that the boundary stencils be at least 
accurate of order p for a given interior accuracy 2p, it is possible to prove 
summation by parts for diagonal scalar products and difference operators D of 
arbitrary order of accuracy [8]. For a given boundary accuracy p, however, it 
may be necessary to resort to interior stencils of accuracy q > 2p, which may 
render these operators useless in practice. 

The actual computation of the operators above is ill-conditioned, since it 
involves the solution of a rank-deficient problem. Using a symbolic language, 
one can solve for D exactly, the elements of which in general will depend on 
one or more parameters. Explicit examples can be found in [6]. For details on 
the algorithms we refer to [9]. The simplest example is furnished by 

(2.3) 

--0.5 0 0.5 0 0 1 

t ~~-0.5 ? 0i5) 1 .) 

Summation by parts can be generalized to several space dimensions if we 
restrict ourselves to diagonal norms. To simplify the notation, we consider only 
the two-dimensional case. A general proof is given in [6]. The grid function uij 
is partitioned as UT - (us'...up), ujf = (UT Uj), j = 0, ...,v2. Define 
the weighted scalar product as 

(2.4) (u, V)h = h E ZZo iojU vij , 
i=O j=O 

where h = h1 h2 is the cell area. Let DI and D2 denote the difference operators 
approximating a/Ox1 and 0/Ox2. Define 

(I 1 2 

(2.5) (I u ij-Zd ikk (D2u)ij = Zdjkuik 
k=O 0= 

where it is assumed that the a's and d's satisfy (2.1). Hence 
Vo2 VI VI 

(u, DIv)h = h2 ( j E aUIT E dikVkj) 
- ~~~~~~~j=O i=O k=O 

and a similar expression holds for (u, D2V)h . The parenthetical expression 
satisfies (2.1) for each j. We thus arrive at 

Proposition 2.3. Let the discrete difference operators D1 and D2 be defined by 
(2.5). Summation by parts then holds in both dimensions, 

V2 V2 

(u, Dlv)h = h2 E UjUIjVIj - h2 > ojujvoj- (Diu, V)h 
j=0 j=0 

VI VI 

(u, D2V)h = hi u vi12-hZ E uiv10 - (D2u, V)hV 

i=O i=O 

where (-. * is defined bv (2.4'). 
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Remark 2.1. This is the discrete counterpart of the two-dimensional divergence 
theorem. With a general domain Q2 we assume that there is a smooth map 

= 4(x) taking Q2 onto the unit cube where Proposition 2.3 can be applied. 
The assumption of such a map 4 is necessary in order for finite difference 
methods to apply to curvilinear domains. Consequently, integration by parts 
can always be replaced with summation by parts in the discrete case. It is 
presently unknown if it is possible to obtain the summation-by-parts property 
in more than one dimension using nondiagonal norms. 

2.2. Projections. Suppose that the model equation of ? 1.1 were discretized as 

vt = D2v + Dv, 
(2.6) v(O) =f, 

where we have assumed homogeneous Neumann data for convenience; in Part 
II [7] it will be shown how to treat inhomogeneous boundary conditions. For 
every fixed h the problem above is a constant-coefficient ODE system with a 
unique analytic solution. Consequently, there is little hope that the discretized 
boundary conditions vo(t) = (Dv),(t) = 0 are fulfilled, since they have not 
been accounted for so far. 

Denote by V c RV+I the vector space where vo(t) = (Dv)1,(t) = 0, and let 
P be a projection of v onto V. Multiplying (2.6) by P yields 

(Pv)t = P (D2v + Dv) 

Any solution of (2.6) satisfying the boundary conditions must obey v = Pv, 
whence 

(2.7) vt=P (D2v +Dv) 

Conversely, we have 

Proposition 2.4. Let P E RsXs be a given projection independent of t, and sup- 
pose that v(t) e Rs is a solution of the nonlinear ODE system 

(2. 8) ~~~vt = PR (t, v ) + ( I - P) g (2.8)v()f 

where f satisfies f = Pf + (I - P)g(0) . Then 

v(t) = Pv(t)-+ (I - P)g(t), t > 0. 
Proof: Since P is independent of t, premultiplication of (2.8) gives (p2 p) 

(Pv)t = PR(t, v). 

Using this equality in (2.8) implies 

Vt = (Pv + (I- P)g),. 

Hence, by integration, 

(I - P)(v(t) - g(t)) = (I - P)(f- g(0)) 

which proves the proposition. a 
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Remark 2.2. The function g(t) represents the boundary data, and (I - P) . 
(v - g) = 0 is the extension of (I - P)v = 0 to inhomogeneous boundary data. 
Proposition 2.4 thus tells us that any solution to (2.8) will satisfy the boundary 
conditions if the initial data do. 

In general, P is not uniquely defined. Consider the vector space V = {v E 
RV+llvo =0, vv =v,_l}. Then 

P= . P=*. 

1 IJ0 1 

both imply Pv E V. To shed some light on how to choose P, we apply the 
energy method to (2.7): 

dt|V|h = 2(v, P(D2v +Dv))h. 

If P were selfadjoint with respect to (' *)h, then 

d 
I IV112 = 2(Pv, D2v + Dv)h 

- 

2(v, D2v + Dv)h 

where the last equality follows from Proposition 2.4. The crucial condition to 
obtain this equality is expressed by 

(2.9) (u, Pv)h = (Pu, V)h 5 

which states that P is an orthogonal projection (using the weighted scalar prod- 
uct ( ,)h). 

Suppose that u(x, t) E Rd, x E Rn, is a solution to 

ut=F(x,t,O)u, xE Q, 
L(x,O)u=O, xeI, 

where a denotes the n-dimensional gradient; IT is the boundary of Q. This 
system is discretized in space, possibly requiring a coordinate mapping onto the 
unit cube, 

vt = PG(t, D)v. 

The projection P should be such that v fulfills 

LTv = 0, 

where L now represents a discretization of the analytic boundary conditions. 
Let V = {v E Rm ILTv = 0} . According to the preceding discussion, P is taken 
to be the orthogonal projection onto V (with respect to (' *)h). The boundary 
conditions can be written as 

QTyV = 0, 

where Q = - L. Hence, the boundary conditions are fulfilled for all vectors 
v that are orthogonal to the column space of Q, the orthogonal projection onto 
which reads Q(QTyQ)1QT'. In case v = I, this is the standard projection. 
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The desired boundary projection is thus given by 

P = I_ Q- Q 

or 

(2.10) P = I - Y7lL(LTy-lL)-lLT. 

Remark 2.3. In order for the projection to be well defined, the inverse of 
LT- IL must exist, which follows if and only if L has full column rank. 
The latter will follow from assumptions on the analytic boundary conditions 
(consistency arguments). 

Proposition 2.5. Suppose that L has full column rank, and let P be defined by 
(2.10). Then 

(i) p2= p 

(ii) p =pTI 

(iii) v = Pv 4.= LTv = 0. 

Proof. All statements are immediate consequences of (2.10). a 

Remark 2.4. The second statement of Proposition 2.5 is equivalent to (2.9). 

2.3. Some technical lemmas. In this subsection we have gathered some technical 
results that will be needed in the subsequent presentation. Their proofs have 
been deferred to the Supplement. As seen in ? 1.1, it is necessary to have a 
Sobolev inequality. The following proposition shows that there is a discrete 
Sobolev inequality for the norms that we are interested in. We present it in a 
form suitable for proving strict stability. 

Proposition 2.6. Let 11 * Ih and D be defined by (2.2) and (2.1), respectively. 
Then 

Iv12 < EiIDvi12 + E` + 1 +6(h)) IVI12 

where e > . 

Let 
(2.11) 

/AO\ 
A = * |A Aj=A(jh), j=0, ... , v, hv =1, 

AvJ 

denote the grid matrix representation of A(xj) E Rdxd, xj = hj E [O, 1]. 
Smoothness will be assumed as needed. 

Lemma 2.1. Let E and A be defined by (2.2) and (2.1 1), respectively. Then 

|(u, Av)h - (A TU, V)h 1< 69(h)IuIIhIIvIIh 

Remark 2.5. According to Lemma 2.1, the transpose of A is an approximate 
adjoint with respect to (', *)h; the perturbation consists of lower-order terms. 

The following assumption will be crucial when proving strict stability for 
hyperbolic systems. 
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Assumption 2.1. Let A and ? be given by (2.1 1) and (2.2). Then one of the 
conditions below is assumed to hold: 

(i) z is diagonal diag(aOI... aPI); 
(ii) The blocks of A satisfy Ao = = A,, and A-r2 = ... = At,, where r1 

and r2, r >0 , O < r2 < v - r1, are defined by equation (2.2). 

Corollary 2.1. If Assumption 2.1 holds, then (u, AV)h = (ATU, V)h. 

Proof. In both cases, I and A commute. The corollary follows immedi- 
ately. o 

Remark 2.6. The latter criterion is satisfied if there is a 3 > 0 such that A(x) = 
const for O < x < a and I - a < x < ,and if h is chosen such that hr < , 
where r = max(rj, r2). 

Lemma 2.2. Let I and A be defined by (2.2) and (2.11). Then 

|(u, Av)h| < |Aloco (I + &(h)) IIUIlhllVllh, 

where IAlo = sup IA (x) I. 

Corollary 2.2. If in addition to the hypotheses of Lemma 2.2, Assumption 2.1 is 
fulfilled, then 

1(u. Av)hl < |AJ|oo||U11h11V11h 

Remark 2.7. Lemma 2.2 states that the growth rate induced by low-order terms 
is the same (modulo 6'(h)-terms) in the continuous and the semidiscrete case. 

Denote by [D, A] the commutator of D and A. It is well known that 
(u, [D, A]v)h < hJ[D, A]IhhI1uIhhIvIh, where ||[D, A IIh can be bounded inde- 
pendently of h. This result can be sharpened under certain circumstances. 

Lemma 2.3. Let D be a difference approximation satisfying the summation-by- 
parts rule (2.1) with respect to a weighted norm (2.2), and define A by (2.1 1). 
Suppose that Assumption 2.1 holds. If A is symmetric, then 

(u, [D, A]v)h < p([D, A])hluIhhllVIhh, 

where p([D, A]) is the spectral radius of [D, A], i.e., p([D, A]) = sup IAkI, Ak 

an eigenvalue of [D, A]. 

3. ONE-DIMENSIONAL PROBLEMS 

We shall successively consider hyperbolic, parabolic and mixed hyperbolic- 
parabolic systems. Variable-coefficient matrices will be allowed. To simplify 
the presentation, we shall only deal with the lower boundary x = 0, which is 
justified if we take the solution to have compact support. In general, the upper 
boundary x = 1 is treated in a fashion similar to the procedure at the lower 
boundary. 

3.1. Hyperbolic systems. Consider the hyperbolic system 

(3.1) 
ut=Au,+Bu+F, xE(O, l), A 
u(x, 0) = f(x), A(x, t) = t) A t) 

u(O, t) = Lu+(0, t) LE Rd xd2 A+x,) 
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where u E Rd, di + d2 = d; A-, A+ is the partitioning of A into negative 
and positive eigenvalues. It is assumed that the elements of the diagonal matrix 
A never change sign at the boundaries x = 0 and x = 1, and that there is 
a constant y > 0 such that A_(j, t) ? -y and A+(j, t) > y, j = 0, 1. 
This implies that the rank of L is constant. Furthermore, L is assumed to be 
"small". 

The discrete boundary conditions are written as LTv = 0 where 

(3.2) LT = (LT 0 ... O) e Rd,x(v+l)d. 

Here, LT = (I -L) E Rdl xd, the latter L being the analytic boundary oper- 
ator. It follows immediately that rank(L) = rank(I) = d1 . The hypothesis of 
Proposition 2.5 is thus satisfied, and we have the semidiscrete system 

V(O)~t(O t) \ 
(3.3) v,(0=) P(A5Dv +Bv +F) S A= | ~A(-1 , t)) 

Proposition 3.1. Let (', )h be given by (2.2) and suppose that D satisfies the 
conclusion of Proposition 2.1. If P is defined by (2.10) and (3.2), then the 
solution of (3.3) satisfies an energy estimate 

11V(t)j|| + Jt (jVO(T)|2 + IV(T) 12) dT < Ke(a+&(h))t (| fII| + j I|F(T)II2dT) 

Proof. The energy method yields (using Propositions 2.5, 2.4) 

dtllh = 2(v, Vt)h = 2(v, P(ADv + Bv + F))h 

= 2(v, ADv)h + 2(v, Bv)h + 2(v, F)h. 

Summation by parts implies (vv = 0) 

(v, ADv)h = -VjTAovo - (Dv, Av)h -(V, [D, A]v)h. 

Hence, by Lemma 2.1, 

(v, ADv)h <-? vAOv hD +12 KoJV1hjhDv1h + |[D,A]11h h 

where hD is a bounded operator, i.e., 

(v, ADv)h < -2vOTAov +2 (KI + jj[D, A]IIh) IIvIhI. 

Now, according to Propositions 2.4, 2.5 we have LTV = 0, which is equivalent 
to v_ = Lv+ (the latter L denoting the analytic boundary operator). Thus, 

vTAovo = VTA-v- + v+'A+v+ = V+T (A+ + LTA-L) v+ > 2 Iv02, 

where the last inequality follows from the boundary conditions and the assump- 
tions on L and A. Note that the analytic problem would result in exactly the 
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same inequality. Hence, 

(v, ADV)h ?4 voi2 + (K1 + II[D, A]IIh) hIIvIs 

Lemma 2.2 shows that 

(v, Bv)h < (IBloo + (9(h)) ll IVl 2 

Consequently, 

d |v|I12 + Ivol2 

< i( /2) ((l[D, AIllh +21BK + 1 +Ki +6-(h))llvll + llFlF)1 

Integration with respect to t proves the proposition with K = max(l, 2/y). o 

Definition 3.1. A semidiscrete approximation to the initial-boundary value prob- 
lem ut = F(x, t, 0)u is said to be strictly stable, if the semidiscrete solu- 
tion satisfies an energy estimate that is exponentially bounded by exp(a't), 
at = a + &(h), where a is the exponential growth factor of the analytic esti- 
mate. 

Remark 3.1. If A (or (', )h) satisfies Assumption 2.1, it follows that K, = 0. 
Also, by Lemma 2.3, jj[D, A]lIh = p([D, A]). Equation (3.3) would thus be 
strictly stable if p([D, A]) < /A'jIo. In particular, (3.3) is strictly stable if 
A(x) = const, since this implies [D, A] = 0. We also point out that the 
proportionality constant K is completely independent of the discretization. In 
case the estimate of the boundary integral is not needed, one may take K = 1 . 
For variable-coefficient problems we have the following result. 
Corollary 3.1. Let D and (., *)h be given by (2.3). Then (3.3) is strictly stable. 
Proof. According to the preceding remark, the corollary follows if we can show 
that p([D, A]) < lA'l. But 

O Al - A O 
0.5(Al - AO) ? O.5(A2 - Al) 

[D, A] =h.* - 

0.5(Av-, _-Av -2 ) ? 0.5(Av - Av_1 ) 
AV-Av-, 1 

If A(x) is assumed C1, the mean value theorem gives Ai - Aj = A'(4ij)(i - j)h 
for some Xij E (ih, jh). The corollary thus follows from the Gershgorin disk 
theorem. o 

3.2. Parabolic systems. We consider the parabolic system 
(3.4) 

ut = Au,, +BuX + Cu+FF x E (0, ) L L 
u(x, O) = f(X), Lo= L LI ( ) 
Lou(O, t) + LIu,(O, t) = 0, ? 

where LI, LI eRdixd LLIeRd2xd, d1+d2=d; rank(LI)-dl, rank(LII)= 
d2; A, B, C, and F depend smoothly on x and t. It is assumed that the 
system is strongly parabolic, i.e., A(x, t) + A(x, t)T > 265I. 
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The following lemma, a proof of which can be found in [3, Lemma 7. 2. 1, 
p. 215], will be crucial when proving an energy estimate for the solution of (3.4) 
and its semidiscrete counterpart. 

Lemma 3.1. Let A E Rdxd be arbitrary and let Lo, L1 E Rdxd be of the form 
(3.4). The following conditions are equivalent: 

(i) There exists a constant c > 0 such that 

IUTAuxI < cIu12 

for all u, ux E Rd that satisfy 

Lou+Llux = 0. 

(ii) If a, b E Rd are vectors such that 

L{b=O, L,Ia=O, 

then 
aTAb = 0. 

Assumption 3.1. Given the boundary matrices Lo, L1, the matrix A(x, t) is 
supposed to be such that the second condition of Lemma 3.1 holds for x = 0, 1 . 

Remark 3.2. Except for Dirichlet and Neumann conditions, Assumption 3.1 
imposes severe restrictions on A. Lemma 3.1 states that the assumption above 
is necessary in order to obtain an energy estimate. The computations that follow 
will show how the second condition, which holds by assumption, implies the 
first. 

Before deriving the energy estimates, one more lemma is needed [3, Lemma 
7. 2. 3, p. 217]. 

Lemma 3.2. Suppose that Assumption 3.1 holds and that A(x, t) + A(x, t)T > 
23I. Then the d x d matrix 

(Loyl 

is nonsingular. 

As usual, the boundary conditions are written as LTV = 0, where 

(3.5) LT= (Lo+ Ll ?VLi ... ?rLI 0 ... 0 ) eRdx(v+l)d 

and where doj/h are the nonzero elements of the first row of D, which is a 
difference operator satisfying the conclusion of Proposition 2.1 or 2.2. We have 

((dooh)I I [(Lo h (L 1I 
Lo + -w-Li =} [k LI' +d0 O,J 

Thus, Lemma 3.2 implies that Lo + (doolh)LI is nonsingular for h > 0 suffi- 
ciently small. From (3.5) it follows immediately that rank(L) = d. According 
to Proposition 2.5, the corresponding projection operator is well defined, and 
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we obtain 

(3.6) Vt-P(AD2V + BDv + Cv + F), A (A , t) 

A(1, t) 

with similar expressions for B, C, F. 

Proposition 3.2. Let (', )h be given by (2.2) and suppose that D satisfies the 
conclusion of Proposition 2.1. If P is defined by (2.10) and (3.5), then the 
solution of (3.6) satisfies an energy estimnate 

I I(t) I 12 + j (vo() 12 + Vv (T) I2) dT < e(a' +(h))t (I IfI I1 + j IIF(r)IIdr) 
Proof: By Propositions 2.5, 2.4, 2.1 we have (Ao = A(0, t)) 

(v, PAD2v)h - (v, AD2v)h = -vh Ao(Dv)O - (Dv, ADv)h - (v, [D, A]Dv)h, 

where we have assumed homogeneous Dirichlet conditions at the upper bound- 
ary for convenience. From Proposition 2.5 it follows that 

1 r 
(3.7) Lovo + LI Z E dojvj = Lovo + LI (Dv)o = 0. 

j=O 

Partition vj = v5 + v5', V E kerLI , V5' E (kerLI)'. Equation (3.7) implies 
LIIvo = 0 and by construction LI (Dv')o = 0. Hence, according to Assumption 
3.1, 

-v0TAo(Dv)o =_VTAO(Dv")O. 

Equation (3.7) can be rewritten as 

(L ) (Dvy")O = -LOvO. 

Since (Dy"l)o E (ker LI )', we get 

LI(Dv'")o = -LOvo, LI = K) 

Sd2J 

where {sj} is a basis in kerLI. Thus, LI is nonsingular, and one obtains 

-vTjAo(Dv)o= VjTAoLj 
I Lovo < yIvoI2, y = IAoLV'LoK. 

This is exactly the same expression as one would get in the analytic case (Ao = 

A(0, t)). Thus, 

(3.8) (v, PAD2v)h < yIV0I2 - 1IIDvII1 + II[D, AIIIhIlvIIhIlDvllh 

Furthermore, 

(3.9) (v, PBDv)h < (IBKOO +V(h))IIVIIhIIDvIIh 

(v, PCV)h < (|Cljo + 6(h)) IIVjI12 
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Finally, Proposition 2.6 and the algebraic inequality yield 

d tv12+ IV0I2 < (a' + 6(h)) I Iv I 
12 + IIFI 1. 

Integration with respect to time proves the proposition. o 

Remark 3.3. All coefficients, except II[D, A]IIh, appearing in (3.8) and (3.9) 
are identical (modulo 6(h)-terms) to those of the analytic estimate. Since the 
discrete Sobolev inequality 2.6 introduces the same growth rate as the analytic 
Sobolev inequality, it follows that (3.6) is strictly stable if we have the estimate 
II[D, A]IIh < IA'IK,oo which is true if A(x) = const. 

For variable coefficients one can prove 
Corollary 3.2. Let D and (' )h be given by (2.3). Then (3.6) is strictly stable 
if A is symmetric. 
Proof. Same as for Corollary 3.1. o 

3.3. Hyperbolic-parabolic systems. Consider the mixed hyperbolic-parabolic 
system 

ut = Auxx + Bllux + Bx2Vx + CI(U + C12V + F x e (0, 1), 
vt = Avx + B21ux + C21u + C22V+ G, 

(3.10) LI ux(O, t) +Lou(O t) + Mov(o t) =0, 
v_(O, t) =Sov+(O, t) + Rou(0, t), 

u(x, 0) =f(x), 
v(x, 0) =(x) 

where u E Rdl, v E Rd2, V_ E Rd2, v+ E Rd2, and 

Mo )M. 

As usual, we assume u = vO in a neighborhood of x = 1 for convenience; 
Lo, L1 are as in ?3.2, and SO satisfies the hypotheses of the boundary operator 
in ?3.1. The coefficient matrices and the forcing functions of the differential 
equations may depend on x and t. 

The discretized boundary conditions are written as LTW - 0, where LT e 
Rd (v+1)d d = d1 + d2, d' = d1 + d2, is given by 

ILo + dooLI M do,LI 0~ 
kA O (I -SO)Jk 0 oJ 

(3.11) (( ? h I (I ?5 40L 'o0) 0 ...o) 

We want to show that LT has full rank. The first block of LT can be rewritten 
as 

(h ) ( L 0) + ((h/doo)L (h/doo)Moo (h/doo)MoI (Dh 
[K-RoI 0 0-s 
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where 
D(h) - ((doo/h)II ) L= I(jy1) L=L('). 

Since L is invertible, it follows that 

(L O) + ((h/doo)L (h/doo)Moo ) 

is invertible, i.e., has full rank for h > 0 sufficiently small. The expression 
enclosed by the square brackets thus has linearly independent rows, which in 
turn implies that the first block of LT has full rank. Hence, L has full rank, 
and the corresponding projection is well defined. 

The semidiscrete system is formulated as 

(3.12) 

w,-P(AD2w+ADw+Cw+F) 
j 
1=j j = 

w(O) = =0j. v 

where 

A =diag [ i,)0] 

A= diag [B21 (jh t) A2(jh ' t))] j =0 ... * v. 

[C21 (jh t) C22(jh: t) 
The forcing function F and the initial data V/ are defined analogously. 

Proposition 3.3. Let (, *)h be given by (2.2) and suppose that b satisfies the 
conclusion of Proposition 2.1. If P is defined by (2.10) and (3.1 1), then the 
solution of (3.12) satisfies an energy estimate 

U(t)II2 + IIV(t)II2 + 
Z j ( 1u(rI2 + Ivj(r)12) dr 

j=O and v 

< Ke('"+(' (iitii + IIFITh + j (IIFer|I| + IIG(T)II) dr)T 

Proof. The energy method applied to (3.12) yields 

d t |Iw = 2(w, P(AD2w + ADw + Cw + F))h 

=2(w, (AD2W +ADw+Cw + F))h. 

Now 

(w, AD2W)h = h ,aij(UTVT) (Aj ? 1 u 
i, j= 

i I 0 W Z diJkdkl (V) 

1/ 1/~~~~~~, 
= 

- h E a1uITAI7i W djkdklul = (u, AD2u)h 
i,j=O k 1=0 
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where D is the difference operator of (3.6). The remaining terms are handled 
in a similar manner. One has 

(i) (w, AD2W)h = (u, AD2u)h, 
(ii) (w, ADw)h = (u, Bl1Du)h + (u, Bl2Dv)h + (v, B2lDu)h + (v, ADv)h 

(iii) (W, CW)h = (U, C11U)h + (U, C12V)h + (V, C21U)h + (V, C22V)h, 

(iv) (w, F)h = (u, F)h+ (v, G)h 

For convenience we use the same symbol D to denote the difference operators 
acting on u and v. As far as the energy estimate is concerned, the hyperbolic- 
parabolic system has now been reduced to the previously treated hyperbolic and 
parabolic systems. 

Items (iii) and (iv) consist only of lower-order terms, and can be estimated 
using Lemma 2.2. Thus, the coefficients of the estimates are identical to the cor- 
responding analytic estimate (modulo &(h)-terms). In item (ii) the potentially 
"dangerous" terms are those containing Dv. Using exactly the same technique 
as in the proof of Proposition 3.1, we get 

(v, ADv)h < - IvoI2 + ISoTA_RoJJvoJJuoJ + 1-IR A_RoJIuoI2 

+ 2(K1 + II[D, A]IIh) 1hIIvI 

i.e., by means of the algebraic inequality 

2' I12 + ,I021+IV1 (v, ADv)h -6IvoI + yiluol + 2 (K1 + II[D, A]IIh) IIhIIh 

Furthermore, 

(u, Bl2Dv)h ? 2IBi2K (EiIvoI2 + E1BuOI2) 

+ II[D, B12IIhIluIhIIlvIlh - (Du, Bl2V)h 

Finally, in item (i) the term (u, AD2U)h is treated as in the proof of Proposition 
3.2, the only difference being that 

-uTAo(Du)o = uTAoLTl Louo + uoAoL- IMovo 

< Y2 [e2IvI02 + (ci I+ I) U012] 

We point out that the coefficients of the boundary terms in the inequalities above 
are identical to those of the analytic estimate. Choosing el and 62 sufficiently 
small, we thus arrive at 

dt 2|w||h + (IuI02 + Iv0I2) < (a' + $(h)) IIwI12 + tIFII1 + JIGIt12 

where we have used WI12 = - lulJl2 + IJVIII; in the right member we have used 
Proposition 2.6 and the algebraic inequality to eliminate Iuo12 and IlDullh. 
Integration proves the proposition with K = max( 1, 4/y). o 

Remark 3.4. In case no estimate of Iv012 is needed, one may take K = 1. Also, 
only the coefficients ll[D, A]I Ih ll[D, A]llJh ll[D, B12]1Ih and K1 will be larger 
than their analytic counterparts. If either of the conditions of Assumption 2.1 is 
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met, then K1 = 0 and the operator norms can be replaced by the corresponding 
spectral radii (cf. Lemma 2.3). In particular, if A, A, B12 are constant, then 
(3.12) is strictly stable. 

As before, for variable coefficients we have 

Corollary 3.3. Let 6 and ( , *)h be given by (2.3). Then (3.12) is strictly stable 
if A and B12 are symmetric. 

Proof. Same as for Corollary 3.1. o 

3.4. Strict stability. So far we have obtained strict stability under special cir- 
cumstances, such as constant-coefficient problems or second-order methods. 
The crux of the matter lies in estimating the commutator [D, A]. Only in 
the previous cases were we able to prove that II[D, A]IIh < IA'IKo . In fact, nu- 
merical experiments show that II[D, A]IIh > p([D, A]) = KIA'It, K > 1, for 
high-order methods. Typical values for D's corresponding to diagonal norms 
are K = 1.67, K = 2.55, and K = 35.8, where the operator accuracy increases 
from three to five. One would still obtain K > 1 even if one considered only 
the interior operator. This indicates that the commutator should be avoided, 
which can be achieved if the analytic problem is reformulated. 

The hyperbolic system (3.1) can be rewritten in skew-symmetric form as 

Ut = (Au)x + Aux + B- 1A' u+ F, xEO,1), 

u(x, 0) =f (x) 
u_(O,t)=Lu+(O,t), LERdlxd2 

The corresponding semidiscrete system becomes 

(3.13) Vt=P (DAv+ ADv+ (B--A') v+F) 

v(O)=f. 

Proposition 3.4. Let , )h be given by (2.2) and suppose that D satisfies the 
conclusion of Proposition 2.1. Define P by (2.10) and (3.2). If either A or X 
fulfills Assumption 2.1, then (3.13) is strictly stable. 

Proof. The energy method implies 

d 
d|IVIIs = -VTAovo - (Dv, Av)h + (v, ADv)h- (v, A'v)h 

+2(v, Bv)h + 2(v, F)h. 

The boundary terms are treated exactly as in the proof of Proposition 3.1. 
Because of Corollary 2.1 we have (Dv, Av)h = (v, ADv)h. Thus, by Lemma 
2.2, 

d ||V|12 + YIVO12 < (IA'Koo + 2IBloo + 1 + (h))l|V 11 + ||FI 12 
dtIVI 2 +'h)II~+IFI 

which is identical (neglecting &(h)-terms) to the analytic estimate. o 

Remark 3.5. If X is diagonal, then the &(h)-terms vanish identically (Corollary 
2.2). 
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The parabolic system (3.4) is altered in a slightly different manner. The 
modified system reads 

Ut = (AuX)X + (B-A')ux + Cu+F, x E (O, 1), 
u(x, 0) = f(x), 
Lou(O, t) + L1 ux(0, t) = O, 

which is discretized as 

(3.14) vt=P(DADv+(B-A')Dv+Cv+F), 
(3.14)~v(0) = f. 

Proposition 3.5. Let (', )h be given by (2.2) and suppose that D satisfies the 
conclusion of Proposition 2.1. If P is defined by (2.10) and (3.5), then (3.14) is 
strictly stable. 

Proof. Left to the reader. o 

Finally, the mixed hyperbolic-parabolic system is reformulated as 

Ut = (Aux)x + (B11 - A')ux + (Bl2v)x + CIIu + (C12 - B2)v + F, 

vt = 2 (Av)x + -Avx + B21 ux + C21 u + (C22 - -A')v + G , x E (O0, 1), 

where the initial data and the boundary conditions are identical to those of 
(3.10). In semidiscrete form we have 

(3.15) Wt = P (DADw + DAw + BDw + (C-A')w + F), 
w(O)= i, 

where A and B are block-diagonal matrices of the form 

A = diag [0 B1(jh, tj/)] 

j = ,.. . ,v. 

[( B21 (Jh, t) A(jh,~ t)/2) 

Proposition 3.6. Let (', )h be given by (2.2) and suppose that b satisfies the 
conclusion of Proposition 2.1. Define P by (2.10) and (3.11). If either A or X 
fulfills Assumption 2.1, then (3.15) is strictly stable. 

Proof. Left to the reader. o 

4. TWO-DIMENSIONAL PROBLEMS 

The results of ?3 will now be generalized to two space dimensions. If the 
boundary is smooth, the original problem can be decomposed into two problems 
via a partition of unity, one of which is a Cauchy problem. The second problem 
is an initial-boundary value problem that is periodic in one space dimension, 
see figure below. 
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Consequently, summation by parts is needed only in one dimension, and the 
generalization of Propositions 3.1, 3.2, 3.3 to two dimensions follows immedi- 
ately. For details on the decomposition we refer to [3, sec. 8. 1. 4 and sec. 8. 2. 6]. 
The situation is different if the boundary is nonsmooth, which is the case in the 
presence of corners. As mentioned at the end of ?2.1, it is not known how to 
extend norms of type (2.2) so as to obtain. summation by parts in several space 
dimensions. We thus limit ourselves to diagonal norms, in which case we have 
Proposition 2.3. 

All boundary conditions considered so far are local. In case of characteristic 
and Dirichlet conditions no new difficulties are presented in two dimensions, 
because each boundary point can be treated individually. Boundary conditions 
involving derivatives increase the complexity significantly. Therefore, we shall 
only allow normal derivatives in the boundary operator. This is no serious 
restriction from the application point of view. Thus, away from the corners 
these boundary conditions are locally one-dimensional. For each such bound- 
ary point we obtain a projection operator of the previous section. In particular, 
these operators commute since they affect disjoint sets of grid points. At cor- 
ners the situation is more complicated, because there are two different normal 
derivatives, which implies that the corresponding projection no longer is locally 
one-dimensional. 

P1 

4 . - PI, P2, Pc commute 

PC o 

P2 

Throughout this section we shall focus our interest on the origin, and assume 
that the solutions are supported only in a neighborhood of (0, 0). The re- 
maining boundary conditions will be accounted for by applying the projection 
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operators corresponding to the boundary point in question. Since these opera- 
tors commute, the resulting product is the uniquely defined boundary projection. 
The domain of definition is taken to be Q = (0, 1) x (0, 1) with boundary F. 
It will be shown in Part II how to extend the results to curvilinear domains. In 
order to simplify the presentation, all lower-order terms will be omitted. 

4.1. Symmetric hyperbolic systems. Consider 

2 
d ut = Aiux + F, xEQ=(O, 1)x(O, 1), uER, 

(4.1) 
u(x, O) =f(x), x = (X, X2) 

,(Pix, t) =S(x),(I(x, t) ,x E F, 

where (pi, (pi denote the locally ingoing and outgoing characteristic variables; 
Ai = Ai(x, t), i = 1, 2, are symmetric and S(x) is assumed to be "small". 
It should be noted that (o'E Rd(x), il E Rd2(x), where di(x) + d2(x) = d, 
x E F. The matrix 

2 

(4.2) A(x, t) _Eni(x)Ai(x, t) 
i=l1 

can be diagonalized for every x E F; n(x) = (n I(x), n2(x)) is the outward 
unit normal of F. Hence, 

(4.3) A(x, t) = QT(x)A(x, t)Q(x), x E F. 

Note that we allow the eigenvalues to be time-dependent, whereas the eigen- 
vectors are assumed to be time-independent to make the resulting projection 
operator independent of time. It will be shown in a future paper how this 
technicality can be overcome. The characteristic variables are only needed at 
the boundary, and they are defined as (p(x, t) = QT(x)u(x, t). It will be as- 
sumed that A(x, t) is uniformly nonsingular for x E F, i.e., the eigenvalues are 
bounded away from zero. However, the number of positive and negative eigen- 
values may differ from one boundary point to another. The analytic boundary 
conditions can thus be expressed as 

(4.4) L(x)u(x, t) = 0, L(x) = Q[(x) - S(x)QT(x). 

Clearly, L(x) has full rank for every x E F. Strictly speaking, L(O, 0) is not 
defined so far, because the normal n(O, 0) is not well defined. It will soon be 
shown how to define L(O, 0), and we can formally consider L(x) as being 
defined for every x E F. 

Let vij, i = O, ..., v,, j= 0,..., V2 be a grid function. Define vT= 
(vT ... vT), vT = (vjTj... vTj). The discretized boundary conditions are 
written as 

(4.5) LTjvj = 0 

for i = O, v, j = 1, ...,I2- and j= , V2, i = 0,., v1, where 

LT = (O ... 0 L(ihI , jh2) 0 0) e Rd,(i,j)x(v,+I)d 
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with the nonzero element being the ith entry. At the origin we define 

(4.6) L(O 0) = QT(0, 0) - S(0, O)QT(O, 0) 

where Q(0, 0) fulfills 

QTAOOQ = Aoo, Aoo niAi(O, 0, t), n=- , n2- h 
i=l 

where h = hi + h. The motive for defining L(0, 0) this way will be evident 
later. Furthermore, Aoo is supposed to be nonsingular. Let 

VI 

Lo = (Loo ... o) R(vl+)dxso so = Zdi(i, 0) 
i=O 

= (Loj Lvlj) E R(vi+l)dxs;, si = d(i, j) 
i=O and v1 

Vl 

LV2 = (LOV2 ... LvI V2) E R(vl+1)dxsv2,V2= di (i - 2) 
i=O 

where j = 1, ... , v2 - 1 . The boundary conditions may thus be expressed as 

'Lo V 2 

(4.7) LTv = 0, L = .. E R(v+)(v2+)dxs 5 = j 
< LV2 ij=o 

Obviously, rank(L) = s, i.e., L has full rank. Hence, the corresponding bound- 
ary projection is well defined, and is given by 

P = I - XlL(LTX-lL)-lLT 

where 

(?b~1 =.| . , = ........)... , I E Rddxd. 

It is possible to simplify the expression for P in this case. We have 

(i7lLo/ao L 

But 1 1 Lj = LjHj, where 

H= (I/ao I ) ERSIXS, j l, ... ,v2-1, 

Hj= (| .. E RsIXSj, -0 ,V2 

lv,, 
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Hence 
tHo/ cr\ 

Y71L=LH, H= (*. ERsXS. 

Clearly, H is invertible. We therefore arrive at 

P = I - LH(LTLH)-LT = I - L(LTL) ILT 

i.e., P is independent of L. 
The semidiscrete system can now be defined as 

(4.8) Vf = (2 AiD,v + F) 
v(O)=f- 

It will next be shown that the solution to the system above satisfies an energy 
estimate. 

Proposition 4.1. Let (', *)h be given by (2.4) and suppose that D1 and D2 sat- 
isfy the conclusion of Proposition 2.3. If P is defined by (2.10) and (4.7), then 
the solution of (4.8) satisfies an energy estimate 

v (t)| + 1 IIv(T)11 |dT < Kel't (| f1i| + j I|F(T) I dT) 

where the boundary energy 11 - I lr is given by (v1 =2 = V for convenience) 

1v(z)IIr = h2 
a 
)1 (IVojI2 + IVvj12) + hZ ai (IVzo02 + IvIvl2) 

I=o i=O 

Proof From Propositions 2.5 and 2.4 we obtain 

2 
d IIvII2 = 2 (v, AiDiv)h + 2(v, F)h- 

From Proposition 2.3 and Corollary 2.1 it follows that (v is only supported in 
a neighborhood of (0, 0)) 

(v , AIlDI V)h =2 (h2 E jOTj(A lv )Oj + (v , [DI , Al Mv h) 

(v, A2D2v)h =-2 (h , a(iV7T(A2V)io + (v, [D2, A2IV)h) 
i=O 

Thus, by Lemma 2.3 we have 

d ?- v 

dtIlVI<h Z-hi a,iv(A2v)iO - h2 ojv Tj(AIv)o} 
i=o j=O 

+ ( p([Di, A]) + 1) jjVI12 + IIFj 
12 
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In the first sum the outward unit normal is n = (0, -1), and in the second 
n = (-1, 0) . Except for the origin, the boundary terms are of exactly the same 
form as in the one-dimensional case. Eqs. (4.2), (4.3) thus imply that 

-v (A2V)io = qJTA1oqio < IV2 koi12 =- v2 i > I. 

A similar inequality holds for the other terms. At the origin we get 

-h2 ooVjT(Alv)oo - hiaovjT(A2v)oo = ho(oTAoo(poo < -ho 2OO I(ooI 2 

But h > (hi + h2)/Vv. Hence, 

-h2 ooVT(Alv)oO - hiaovT(A2v)oo < -hlao Ivoo12 - h2Co I Yo i2. 

Since A(x) is uniformly nonsingular it follows that y _ inf(yoo/V, Yio, yo0) > 
0. Because of yoo, the constant y will in general be smaller than the corre- 
sponding constant of the analytic energy estimate. We thus arrive at 

d11V112h + 121 < p([Di, AJ]) + 1) IIVI12 + IIFII 2 

which proves the proposition (K = max(1, 2/y)). o 

4.2. The heat equation. The analysis of homogeneous Dirichlet conditions is 
straightforward, even if the domain of definition Q is nontrivial. The prob- 
lem lies in discretizing the Neumann conditions properly. This was clear in 
one space dimension. In two dimensions the occurrence of corners certainly 
complicates the analysis. To gain insight, we shall begin by looking at a simple 
model problem. 

The two-dimensional heat equation reads 

ut = uxl + ux2x2, x E Q = (0, 1) x (0, 1) 
un(x,t)=O, xeI, 
u(x, 0) = f(x), 

where u,, is the normal derivative of u. Again, we focus our attention to a 
neighborhood of (0, 0). The boundary conditions are discretized as 

(4.9) 

hdOkVkj-, =-Z , 2 Edokvik=O, 
k=O ~~~~~~~~2k=0 

or, equivalently, 

(4.10) (D1v)Oj=0, j=0 ,... r, (D2V)io = i=O,.. r, 

where DI and D2 are defined by Proposition 2.3. The conditions above im- 
ply that two boundary conditions are prescribed at the origin for the discrete 
problem. This approach is natural from the intuitive point of view, in that 
gradients at the origin may be interpreted as one-sided limits from the interior. 
For the time being we ignore this technicality. It will later be shown how it can 
be overcome. When deriving the projection operator it is convenient to cast the 
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boundary conditions into yet another form. Define the boundary operators L1j 
and L2N through 

(4.11) LbTv (Dlv)oj = 0, LvTV (D2v)io = 0 

for i, j = O, ..., r, where 

LbT (O ... 0 RZdvkel O o) E Rlx(l,+l)(v2+l) 

T 00O T dOr T L2i =(h2-ei ... h ei . . .. 0 Rlx(vl+')(v2+1) 

where i, j = 0, ..., r; {ei} is the canonical basis in RV1+l . The boundary 
conditions can thus be written in standard form LTV = 0, where 

(4.12) L = (LIo ... Llr L20 ... L2r) E R(vl+l)(v2+l)x2(r+l) 

We know that the corresponding projection operator is well defined if and only 
if rank(L) = 2(r + 1) . 

Lemma 4.1. The columns of L (4.12) are linearly dependent. Thus, rank(L) < 
2r+ 1. 
Proof. To investigate linear dependence, we study 

r r 

E ZjL,j + E fljL2j = 0 
j=O j=O 

which is equivalent to 
r 

Z (ajh2dok + fikh1doi) ek = , j= O, ... ,r. 
k=O 

Since {ek} is an orthonormal system, it follows that 

ajh2dok + fikhido=O, j,k=O, ... ,r, 

which obviously has the nontrivial solution 

aj = doj, ,Bj = -W-doj, j = O, .,r 

The lemma is proved. o 

As a consequence of Lemma 4.1, the projection formulation breaks down. 
If, however, we change the boundary condition at the origin to 

(4.13) LTv ((1 -x)LT + XL T)V =O, Ox< < 1, 

and leave the boundary conditions at the remaining points unchanged, we get a 
well-defined projection operator, since 

(4.14) L= (LII ... Llr Lox L21 ... L2r) E R(vl+i)(v2+1)x2r+1 

has full rank. 
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Lemma 4.2. The columns of L (4.14) are linearly independent. In particular, 
rank(L) = 2r + 1. 

Proof. Again we study 

r r 

E ajLIj + yLox + E f3jL2j = O 
j=i j=i 

which is the same as 

h 
Z 

flkek+Y ((1-X)- 
EdOkek+X%heO) 

=0, 
k=1 k=O 

hjhEdkek+ YXh2j=1,...,r. 
k=M- 1 = 

The first component of the first equation yields y(h2(1 - x) + hIX)doo = 0. 
Since doo :$ 0 for any operator satisfying Proposition 2.3, and since hi > 0, 
o < X < 1, necessarily y = 0. From the remaining components of the first 
equation we then obtain f3j = 0, j = 1, ..., r, which in turn implies aj = 0, 
j = 1, ..., r. The columns of L are thus linearly independent, i.e., L has 
full rank. o 

Before proceeding with the energy estimate, one more lemma is needed. Let 

LoX, and LoX2 be defined by (4.13), and define L E R(VI+1)(v2+1)x2(r+1) by 

(4.15) L = (LI, ... L r LoQX LoX2 L21 ... L2r) 

Lemma 4.3. The columns of L (4.15) are linearly dependent. Thus, rank(L) < 
2r+ 1. 

Proof. Consider 

r r 

E ajLij + y Lox, + Y2Lox2 + E f31L2j = 0. 
j= yj=i 

Obviously, the lemma is true for XI = X2. In the following we thus assume 
XI :$ X2 . The equation above can be rewritten as 

r r 

(4.16) E ZajLj + Z fijL2 = 0, 
j-O j=O 

where 

XI X2 /\Y2I - k0o, 

According to Lemma 4. 1, equation (4.16) has the nontrivial solution 

wj = doj , - h2 do j = 0 , r 

whence 
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Yi = doo ( 2 + fh2 2O - X2) A /X2 - XI), , 

> h2 < ~~~~~aj = doj Pifl = -W-dojX -do h2 I1d1 f=-d 
Y2 = -do tXI + h ( - XI ) /(X2 - Xl ), 

solves the original equation. The lemma is proved. o 

Proposition 4.2. Let P be given by Proposition 2.5, where L is defined by (4.14). 
Then LTp=L TP=0. 

Proof Clearly, LTP = 0. Furthermore, L1o, L20 = Lox for X = 0, 1, respec- 
tively. But then, by Lemma 4.3, 

L1o = La1, L20 = La2, 

for some vectors al, Ca2 E R2' I. This proves the proposition. o 

Remark 4.1. Suppose that v is a vector such that v = Pv , where P is as in 
the previous proposition. Then Llov = L20V = 0, i.e., (DIv)oo = (D2v)oo = 0 
In other words, by requiring that the boundary condition at the origin hold for 
a specific convex combination, we actually get the stronger result (DIv)oo = 

(D20)oo = 0. Thus, we need not overspecify at the corners, cf. equation (4.9). 
In the Supplement we give a direct proof that LToP =0 for LoX with X =0.5. 

The semidiscrete heat equation is given by 

(4.17) v,-P (D2 + D2) v, 
v(0) =f. 

Proposition 4.3. Let (., *)h be given by (2.4) and suppose that D1 and D2 sat- 
isfy the conclusion of Proposition 2.3. If P is defined by (2.10) and (4.14), then 
the solution of (4.17) satisfies an energy estimate 

11v(t)1|h < f If l h 

Proof. The energy method gives 

d |V|*2= 2(v, D12v)h + 2(v, D22V)h. 

By Proposition 2.3 (v is supported only in a neighborhood of the origin), 

r 

(v, D2V)h =-h2 E ojVoj(DiV)1 Oj-IDIVIjj2 
j=0 

According to Propositions 2.4, 2.5 and 4.2 we have 

(DIv)oj=LbTv=0 j=0,...,r. 

The remaining term (v, D2V)h is treated similarly, and the proposition fol- 
lows. Q 
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4.3. Parabolic systems. Consider 

(4.18) 
2 

ut= Aijuxixi+FF xEQ=(o, l)x(O, 1), uERd, 
i,j=1 

u(x, O) = f(x), x = (X1, X2), 

Lo(x)u(x, t) + LI(x)u, (x , t) = O, x E F. 

The assumptions on Lo, L1 in (3.4) are supposed to hold pointwise for each 
x E F. Furthermore, we require that Assumption 3.1 with A = Aii be valid on 
xi = 0, i = 1, 2. In particular, the conclusion of Lemma 3.2 holds for each 
boundary point. It will be assumed that (4.18) is strongly parabolic, i.e., for all 
vectors ui(x, t) E Rd, i= 1, 2, one has 

2 2 

EU,(X, t)T Aij(x, t)uj(x , t) > 26 I U,(x , t)12 
i.j= i=l 

for all x E Q, t > 0. If the matrices Aij : 0, i ] j, then the assumptions 
must be strengthened. The energy method applied to one of the cross terms 
yields ( u is supported only at the origin, A12 = const for simplicity, Q is the 
unit square) 

(u , A12UxIX2) =- uTA12uX2dx2 -(Uxi A12UX2 
Xl=0 

In general we cannot get an estimate of ux2(0, x2, t) in the boundary integral. 
It is therefore natural to require 

Assumption 4.1. A? -Aij, i :A j . 

Remark 4.2. Neglecting scaling factors, we have 

A12 = A21 = 
I 

to I o o) C o 1 0 Oj 

for the Navier-Stokes equations ( p denotes the density). Clearly, Assumption 
4.1 is fulfilled. 

If Assumption 4.1 holds, one can integrate by parts once more to obtain 

(u , A12uxl2) 2 u A12(0, 0 , t)u - (ux, A12Ux2) - 

In two dimensions we cannot eliminate the boundary terms by means of Sobolev 
inequalities, since they would involve L2-norms of ux1x. and so forth. This 
motivates 

Assumption 4.2. Let u(x, t) satisfy 

Lo(O, O)u + L1 (O, 0)Un = 0 

at the origin. Then 
uTAij(O, O, t)u = O, i ] j. 
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Remark 4.3. This assumption ensures an energy estimate for the continuous 
problem in case of a nonsmooth boundary, and couples the cross terms of the 
differential operator to the boundary conditions at the origin. In case of the 
Navier-Stokes equations one has zero velocity at the origin. Hence, the state 
vector becomes uT = (p 0 0 p), which implies Assumption 4.2. 

The discrete boundary conditions are formulated as (D1 and D2 are defined 
by Proposition 2.3) 

LTV=jO,. ,r L1j Lo(O, jh2)vo0+ LI(O, jh2) (Dlv)oj = 0, j = r, 
(4.19) 

LITV Lo(ih1, O)vjo + L1 (ih1, O) (D2V)io = , i =0 , ,r, 

where 

Lb= (= *.. 
0 Lo(0,jh2)eOj+Ll(O,jh2)i 1ZdokekT 0 ... 0) 

L = ((Lo(ihi, 0) + L (ih ?)h??) eT ... LI (ih, O) eT 0 ... O 

and eT = (0 ... 0 I 0 ... 0) E Rdx(vl+l)d. The boundary conditions 

can be expressed in the usual form LT V 0, where L E R(v1+1)(v2+1)dx(2r+l)d 

is given by 

(4.20) L = (LIi ,. LIr Lox L2I ... L2r) 

and 
Lox=(1-X)Llo+xL2o <?X < 1. 

Lemma 4.4. The columns of L (4.20) are linearly independent for sufficiently 
small step lengths hi and h2 . In particular, rank(L) = (2r + 1)d. 

Proof. Imitating the proof of Lemma 4.2 gives 

y[Lo(O,o)+doo hx+X)LI(O,o)]=o. 

By Lemma 3.2 the expression inside the brackets is nonsingular for h,, h2 suffi- 
ciently small. Hence, y = 0, which in tum implies aj = f,j = 0, j = 1, . .. , r. 
Since the columns of each block L1j, L2j and Lox are linearly independent, 
the lemma follows. o 

The semidiscrete parabolic system reads 

(4.21) Vt = P (E AijDiDjv + F) 

V(0) = f, 

where P is defined by Proposition 2.5 and by (4.20). Unfortunately, Assump- 
tion 4.2 is not sufficient for the semidiscrete problem. We need 
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Assumption 4.3. Let v satisfy 

Lo(O, 0)voo + LI(0, 0) ((1-X)(Dlv)oo +-x(D2v)oo) =0 O < x < 1, 

at the origin. Then 
(i) 

vOTAij(O, 0, t)voo =0, i$j, 

(ii) 

VOTOA II(0, O, t)=0OTA22(0, 0, t). 

Remark 4.4. The first requirement is identical to that of Assumption 4.2. The 
second, however, appears only in the discrete case. We note that Assumption 
4.3 holds for the Navier-Stokes equations, since AI1 and A22 are given by 

' O O O ' 0 0 0\ 
1 C1 0 01 1 0 1 0 0 

All= O O 1 0 , A22= O O C, 0 . 

(-C2p/p 
0 0 C2 -C2PjP 

0 0 C2 

Hence, v TA11 = VjTA22 = c2(-p2/p2 0 0 p/p) 

Proposition 4.4. Let (, *)h be given by (2.4) and suppose that D1 and D2 sat- 
is,fy the conclusion of Proposition 2.3. If P is defined by (2.10) and (4.20), and 
if Assumptions 4.1 and 4.3 hold, then the solution of (4.21) satisfies an energy 
estimate 

IIv(t)I 12+ IIV(T)I I2 d < e(a'+ (h))t (I If I + IIF(T)II2dT) 

Proof. The energy method yields 

d 2 r r\ 

dv|12? < -2E h2 E akV T (A IjDjv)Ok + h I E 1kVT (A2jDjV)kO dt h kk 
j= I \ k=O k=O 

2 

-26 J IID1vII2 + (Ko + 6(h)) IIVI12 + IIF112 
i=l 

where Ko depends on II[D1, Ajj]IIh, i = 1, 2 and p([Di, Aij]), i :$ j. The 
first cross term can be written as (v has compact support) 

r v (~dI vo 

-h2 Z akvTj(Al2D2V)ok = -h2 Z rkVT Al2(0, kh2, t) dkIVOI 
k=0 k=0 = 

-(vO, A12D2rVO)h2 

where vjT = (vjT ... vj,), and where D2 satisfies (2.1) with respect to the one- 
dimensional scalar product ( h, *2. Hence, 

-(Vo, A l2D2VO) h2 = v A 12(0, 0, t)voo + 2(VO, [D2, Al2]VO)h2 

By Assumption 4.3 the boundary terms vanish. The remaining cross term is 
treated in a similar manner. 
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Next, we take care of the boundary terms corresponding to the pure second 
differences. Only the origin needs to be analyzed, since the other boundary 
points are treated exactly as in the proof of Proposition 3.2. At the origin we 
get ( Ass = Ajj(0, 0, t)) 

- h20oVjTAI I(DIv)00 - hi covjTA22(D2v)oo 

-(hi + h2)UOvj ((l -X)Ai I(DIv)oo + XA22(D2V)oo), X = h+ - -(hi 
~~~~~~~~~~~hi +h2 

and, by Assumption 4.3, 

- h2 0oVjTAII(DIv)oo - hicovoTA22(D2V)oo 

=-(hi + h2)ovjOVAll ((1 - X)(Dlv)oo + X(D2V)oo) . 

But v = Pv implies LoXv = 0, i.e., by (4.19), 

Lo(O, O)Voo + LI(O, O) ((1 -X)(DIv)oo + X(D2v)oo) = 0. 

In particular, LIIvoo = 0. Partition vij = vl; + v5, where v11 E ker(LI), 
slJ E ker(LI)- . Assumption 3.1 then gives 

- h2UoVTjAII(DIv)oo - hIoovjTA22(D2V)oo 

=-(hi + h2)UovOToAII ((1 - X)(Dlv")0o + X(D2V")oo) - 

By construction, 

Lo(0, 0)Voo + LI(O, 0) ((1 -X)(DIv")oo + X(D2V"t)oo) = 0, 

which can be solved in exactly the same way as the corresponding equation in 
the proof of Proposition 3.2. Hence, 

- h2 ovjAII(DIv)OO - hi 0ovA22(D2V)oo 

= h2ov0j0AIIL lLovoo + hi ovj A22L lLovoo, 

where we again have invoked Assumption 4.3. We thus arrive at 

d_ (2AILiLo12,oo+ p([2, Aj2]) + I h2 E UkIVOk 2 ytIIVII2 + IIVII12 < +2([1A) lLVk 
k=O 

+ (21A22L o ILOIi,oo + P([DI, A21I) + i) hi E kIVkOI 

k=O 

2 

-2 Z IElDivII2 + (Ko +6(h)) IIVI12 + IIFI12 
i=i 

where IvII,oo = SUp(IVkol) and Iv12,oo = SUp(Ivokl). Replacing p([bj, Aij]) 
by IAI ji , 0, i :$ j, one obtains the coefficients of the boundary terms of the 
analytic energy estimate. They are thus identical if the coefficient matrices are 
constant or if we use the standard second-order method. Finally, the bound- 
ary terms of the right hand are eliminated by applying the one-dimensional 
Sobolev inequality 2.6 in the xl- and x2-directions, respectively. This proves 
the proposition. o 
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Remark 4.5. It is clear from the proof that (4.21) is strictly stable if the coef- 
ficient matrices are constant, or if AT = Aii, i = 1, 2, and the second-order 
method (2.3) is used. 

5. SUMMARY AND CONCLUSIONS 

We have demonstrated that for a given finite-dimensional scalar product 
(' )h any linear discretized boundary condition can be written as an orthogonal 
projection operator P that satisfies (u, PV)h = (Pu, v)h . It should be noted 
that the projection is well defined if the corresponding analytic problem is well 
posed. For general boundary conditions one may also have to require that the 
discretization parameter h be small enough (consistency). The projections P, 
the summation-by-parts property, and Proposition 2.4 constitute the main tools 
needed to obtain an energy estimate for the semidiscrete case. For a large class 
of problems it has been established that existence of an energy estimate for the 
continuous problem implies the same for the semidiscrete system. 

In one space dimension we are no longer required to consider restricted full 
norms 

(1)1 

which were used in [4] to prove stability for symmetric hyperbolic systems sub- 
ject to homogeneous boundary conditions. The main result is the stability proof 
for mixed hyperbolic-parabolic systems subject to general linear boundary con- 
ditions. Reformulating the analytic problem makes it possible to obtain strict 
stability, i.e., we have a time stable semidiscrete approximation that is bounded 
by the same exponential growth rate (modulo &(h)) as the analytic problem. 
For the parabolic part the excess growth rate is induced by the discrete Sobolev 
inequality. Furthermore, for the hyperbolic part we have used Assumption 
2.1. In particular, strict stability is obtained for diagonal norms and variable- 
coefficient problems, and for general norms and constant-coefficient problems. 
The stability results hold for finite difference approximations of arbitrary order. 

In two space dimensions we are forced to consider diagonal norms in order to 
have summation by parts in both dimensions. Stability of high-order schemes 
is obtained for general hyperbolic and parabolic initial-boundary value prob- 
lems. All results obtained for two dimensions generalize to higher dimensions. 
Furthermore, the stability results are valid even if there are corners present. 
Although there are no general existence proofs for hyperbolic-parabolic prob- 
lems on nonsmooth domains, it may still be useful to have stability results that 
allow for corners since they appear in most multi-dimensional finite difference 
implementations. 

The methods presented in this paper are similar to finite element methods 
in that stability for the semidiscrete system follows more or less directly from 
the corresponding continuous one. There is, however, one major difference: 
The FEM technique often results in implicit space discretization, whereas the 
discretized space operators reported in this paper always are explicit. 
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There are other ways of imposing boundary conditions so as to ensure time 
stability (strict stability) when using difference operators satisfying a summation- 
by-parts property. An elegant technique is proposed in [2]. A so-called Simulta- 
neous Approximation Term, SAT for short, is added to the semidiscrete scheme. 
The SAT will act as a penalty function to enforce an approximation of the dis- 
crete boundary conditions. In [2] this approach is used to prove time stability 
for high-order finite difference approximations of one-dimensional constant- 
coefficient hyperbolic systems. Also, it is not necessary to consider identical 
difference stencils in the interior. A new and interesting class of such difference 
operators can be found in [1]. 
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